Length calculation of open feeder wire on the transceiver

 

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

While looking these curves always remember: To the right it goes to the input aerial of the antenna and to the left to the transceiver. From the curves one is able nicely read that with an open/high impedance feeder wire on TRX to Lambda/4 feeder wire length becomes the low impedance on the antenna. We must connect the antenna where the right impedance is given - ascertained from the Chart "HF tensions in a wire" with the dipole the value sometimes 2 take the right length and then to the TRX to come thus lowest impedance as possible. The right length is the different between the shown or calculated impedance of antenna input an lowest shown impedance on the curves. Then the blind shares and the optimum adaptation will worked with the symmetrical tuner.

Dear hamoperator, for the generally consideration of reaktance for a open feeder wire is following formula generally applicable:    

Zr = Zo * cot(180 * l/Lambda) for degrease or   Zr = Zo * cot(pi * l/Lambda) for radianten calculation

Wether degrease or radiant calculation you must switch it on your pocket calculator.  Zr is the reactance from the load, Zo the input impedance of the wire, l the length or wire an lambda the wave length (300/frequency in mc)  

Now a special case - resonance length:

For lambda/4 and uneven more of that takes effect:  Zo² = Za * Ze    ====>  serial resonance circuit

Zo is the wire impedance, Za the output load (also Zr reactance matching) and Ze the impedanze of input load.  

For lambda/2 and even more takes effect:                Ze = Za             ====>   parallel resonance circuit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabelle 1:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 2:

 

Tabelle 3:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 4:

 

Tabelle 5:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 6:

 

Tabelle 7:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 8:

 

Tabelle 9:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 10:

 

Tabelle 11:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 12:

 

Tabelle 13:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 14:

 

Tabelle 15:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 16:

 

Tabelle 17:

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

Tabelle 18:

 

To the charts:        50 Ohm  100 Ohm  150 Ohm  240 Ohm  300 Ohm  450 Ohm  600 Ohm  750 Ohm  1000 Ohm  back

 

 

Arthur     DL7AHW

 

 

 

Visitors since 06.07.2010

free counters